

Asymmetric Encryption Techniques for Data Embedding and Authentication in Fingerprints Using Eigen Space-Based Modelling

M.Sc. Thesis

Ravi Prakash (31320026) Guided by: Dr. Sinnu Susan Thomas

About Myself

- Ravi Prakash B.Sc. (Hons), and M.Sc. in Computer Science
- Academic Interest, and Experience:
 - Insight building for real-world problems like COVID-19 using AI/ML
 - Pen-testing & applied cryptography
 - Natural language processing (NLP) for problems like mental health analysis
- Professional Experience:
 - Penetration Testing Intern Virtually Testing Lab
 - Blockchain Intern (Security Research) Kerala Blockchain Academy
 - Co-Founder Jijeevisha Trust (NGO)

Areas of Interest

- Cyber Security
 - Application of cryptography in real-world situations
 - Offensive solutions to defend the malware attacks
 - Vulnerability assessment, and source code analysis
- Machine Learning
 - Exploring the scope of explainable AI (XAI)
 - Fuzzy logic for predictive analytics
- Biometrics (fingerprints)
- Security in Metaverse & XR

- Sharma, A., Dutta, M., Prakash, R. (2023) "Comparative Performance Analysis of ML Algorithms for COVID-19 in India," International Conference on Artificial Intelligence of Things (ICAIoT). (accepted)
- Prakash, R., Anoop, V.S., Ashraf S. (2022) "Blockchain technology for cybersecurity: A text mining literature analysis," International Journal of Information Management Data Insights. Volume 2, Issue 2.
- Vashisht G., **Prakash, R.** (2020) "*Predicting the Rate of Growth of the Novel Corona Virus 2020,*" International Journal on Emerging Technologies (IJET). Volume 11, Issue 2.

Prakash, R., Thomas, S.S. (2023) "Asymmetric Encryption Techniques for Data Embedding and Authentication in Fingerprints Using Eigen Space Based Modelling,"

- Applications of fingerprints for biometric data protaction, and information security
- Visual hash for secure data embedding (Hybrid Fingerprint Orientation Map)
- Dynamic key-pair generation for identical inputs:
 - to overcome frequent password updates
 - for dynamic data encryption
- Enhanced authenticity at co-working spaces, and educational institutes
- A better *machine learning classifier* based on *fuzzy logic* Overcomes multi-class data imbalance

State of the Art

- FVC 2000 database [1] for data security [2] and individual identification [3].
- The ensemble learners like Random Forest [4] and Gradient Boost [5]
- Dataset balancing with Synthetic Minority Oversampling Technique (SMOTE) [6]
- Min-cut Max-flow [7] optimization
- Asymmetric and symmetric ciphers like **DES-L** [8]
- Data embedding matrices like **QR Code** [9]
- Adaptive fingerprint detection based on the **image intensity** & **gradients** [10]

Adaptive fingerprint image enhancementwith fingerprint image quality analysis [10]

Key takeaways

made with beautiful.ai

Methodology cont..

HFOM Generation

Methodology cont..

Data Security

ENCRYPTED INFORMATION

	Ρ	L	Α	Ν	Е	Т	Е	Х	Т	S
-		\oplus			\oplus			\oplus		\oplus
	Κ	Е	Υ	Κ	E	Y	Κ	Е	Υ	Κ
ι										
					Ŷ					

Experimental Results

UC-FLEM & HFOM

Proposed Fuzzy	Accu-	Recall	Preci-	F1
Classifier with	racy%	%	sion%	%
KMeans SMOTE [21]	77.08	75.88	75.87	75.87
SMOTE N	77.92	76.94	76.95	76.84
SVM SMOTE	78.33	77.36	77.41	77.29
SMOTE [13]	82.80	82.33	82.70	82.45
Proposed Method	83.15	82.77	83.14	82.89

 Table 4.3: Performance with different oversampling methods.

K_{user}	K_{shift}	K_{pub}	K_{prv}
userkey	8	N[7)V:k/	AXwU5ezr
userkey	8	t, V'4DS	$PK5*$ } $ux@$
userkey	8	$Z.$ } $RS and 3b$	$QI`mxc \wedge 4$
userkey	8	;)g l/VF	UR! # r5:
userkey	8	i8l 9CQ	k7 # IvNdb
userkey	8	1. $w8Ga$	j'Iq7G/K

Table 4.7: Samples of public-private key-pairs generated dynamically.

Conclusion

Novel model for **multi-class imbalanced** dataset **Classification** using **Fuzzy-logic** and **Eigen-space Modeling** i.e. **UC-FLEM**.

Enhanced the Orientation Change using Laplacian filter.

New feature for fingerprints - Squared Sum of Ridge to Valley Ratio, and Average of Orientation Change

Embedded data security using **non-reversible HFOM** generation.

Multiple key-pairs for same pass-phrase and new Asymmetric encryption.

Future Scope

Adaptive binarization of threshold can be introduced.

Dynamic password updating and **hot-line** connection establishment.

Using HFOM with RFID cards for attendance systems.

References

[1] University, B. B. (2000). Fvc2000 fingerprint verification competition.http://bias.csr.unibo.it/fvc2000/db4.asp

[2] Ivanov, V. I., & Baras, J. S. (2017). Authentication of swipe fingerprint scanners. IEEE Transactions on Information Forensics and Security (TIFS)

[3] Kumar, A., & Zhou, Y. (2012). Human identification using finger images. IEEE Transactions on Image Processing (TIP)

[4] Breiman, L. (2001). Random forests. Machine Learning

[5] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29.

[6] Chawla, N., Bowyer, K., & Hall, W., L.O. Kege Imeyer (2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research

[7] Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence

[8] Bansod, G., Raval, N., & Pisharoty, N. (2015). Implementation of a new lightweight encryption design for embedded security. IEEE TIFS

[9] Yuan, T., Wang, Y., Xu, K., Martin, R. R., & Hu, S.-M. (2019). Two layer qr codes. IEEE TIP

[10] E.-K. Yun, S.-B. Cho, "Adaptive fingerprint image enhancement with fingerprint image quality analysis," Image and Vision Computing, vol. 24, 2006.

Thank You!

